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Abstract. MEGA is a large-scale cloud storage and communication platform that aims to provide
end-to-end encryption for stored data. A recent analysis by Backendal, Haller and Paterson (IEEE
S&P 2023) invalidated these security claims by presenting practical attacks against MEGA that
could be mounted by the MEGA service provider. In response, the MEGA developers added
lightweight sanity checks on the user RSA private keys used in MEGA, sufficient to prevent the
previous attacks.

We analyse these new sanity checks and show how they themselves can be exploited to mount
novel attacks on MEGA that recover a target user’s RSA private key with only slightly higher
attack complexity than the original attacks. We identify the presence of an ECB encryption oracle
under a target user’s master key in the MEGA system; this oracle provides our adversary with
the ability to partially overwrite a target user’s RSA private key with chosen data, a powerful
capability that we use in our attacks. We then present two distinct types of attack, each type
exploiting different error conditions arising in the sanity checks and in subsequent cryptographic
processing during MEGA’s user authentication procedure. The first type appears to be novel and
exploits the manner in which the MEGA code handles modular inversion when recomputing
u = q−1 mod p. The second can be viewed as a small subgroup attack (van Oorschot and Wiener,
EUROCRYPT 1996, Lim and Lee, CRYPTO 1998). We prototype the attacks and show that they
work in practice.

As a side contribution, we show how to improve the RSA key recovery attack of Backendal-Haller-
Paterson against the unpatched version of MEGA to require only 2 logins instead of the original
512.

We conclude by discussing wider lessons about secure implementation of cryptography that our
work surfaces.

1 Introduction

MEGA is a cloud storage and communication platform with over 265 million user accounts and
more than 10 million daily users [MEG22a], advertising itself as secure and private by design. The
platform distinguishes itself from other major providers by offering end-to-end encryption for stored
data. On MEGA, user files should remain confidential even if the storage provider is malicious or
has been compromised through a breach, implying security in a strong threat model. The security
of MEGA in this setting was recently analysed in detail by [BHP23], which describes five attacks on
the cryptographic protocol used by MEGA to authenticate users and encrypt user data. The first two
of these attacks completely broke the confidentiality of user files. Shortly after, [RH22] significantly
improved the first attack in [BHP23], reducing its requirement of 512 user logins to just 6.

At their heart, the attacks in [BHP23] exploit the lack of both key separation and integrity protection
for stored keys in the MEGA design: a single user master key is used to encrypt both the user’s
RSA private key (used during user authentication) and the user’s file encryption keys themselves;
meanwhile AES in ECB mode is used for the encryption. This allowed the authors of [BHP23] to
corrupt the RSA private key in certain ways that leaked useful information during the authentication
protocol, as well as to “cut and paste” AES-ECB blocks from file encryption keys into the RSA private
key.
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The authors of [BHP23] proposed an immediate and non-invasive mitigation step in the form of
adding a MAC to the existing construction.4 In response, MEGA chose to not implement this or any
of the other originally suggested countermeasures. Instead, MEGA added extra sanity checks in the
client software to do more validation of payloads during or after decryption [MEG22d]. These checks
were sufficient to prevent the specific attacks of [BHP23, RH22].

Shortly after MEGA released their patch addressing the attacks of [BHP23], they made one other
change which (as we will show below) further increased the attack surface of their code: they added
detailed error reporting during the decryption and sanity checking processes done by the client as
part of the authentication protocol [MEG22e]. The errors produced during these steps are mostly
distinguishable from one another and the error messages are sent to the server in place of the usual
authentication response. A malicious storage provider can exploit this verbose behaviour, triggering
the errors by supplying specially crafted inputs in an attempt to learn something about the decrypted
data.

1.1 Contributions

In the MEGA infrastructure, each user has a master key kM that is used with AES-ECB mode to
encrypt multiple items, including the user’s RSA private key and individual file encryption keys
(in a special obfuscated format). In this work we describe two new attacks on the patched MEGA
infrastructure in the malicious server setting which achieve an AES-ECB decryption capability under
kM. These attacks can be used to recover individual 128-bit blocks of a target user’s RSA private key.
Combining this with lattice techniques, we can efficiently recover the entirety of the target user’s RSA
private key after recovering four specific blocks. Once this private key is recovered, the adversary can
trivially decrypt the RSA ciphertexts appearing in file sharing messages to recover the keys needed
to decrypt any files shared with the target user. The attacks can also be used to recover individual
file encryption keys directly. As with [BHP23], these attacks exploit the lack of key separation and
integrity protection in the MEGA design, showing that the patch and further changes made by MEGA
in response to [BHP23] were not only insufficient but actively harmful.

Both attacks make use of an ECB encryption oracle that is present in the MEGAdrop feature, a part of
the MEGA system that is supposed to be independent of the authentication protocol, yet uses the
same master key kM. This feature enables the receiving of shared files from unregistered users. In
short, MEGAdrop encrypts a newly shared file’s encryption key to a user’s public RSA key, but the
user’s client then silently re-encrypts that file encryption key under kM using AES-ECB whenever
the user is logged in. Since a malicious server can arbitrarily choose the file encryption key when
sharing files with the user and then observe the resulting AES-ECB ciphertext, this provides the
ECB encryption oracle that we need. For technical reasons explained later, we obtain two AES-ECB
encrypted 128-bit blocks for each use of the oracle. Notably, the ECB encryption oracle can be realised
without any user interaction. Details can be found in Section 2.

The attacks also exploit the distinguishable errors arising during user authentication. We describe
the individual errors in detail in Section 2. Both attacks can be seen as key overwriting attacks, since
they rely on manipulating the values that are interpreted as the RSA private key by the client, and on
including the target AES-ECB ciphertext block in a particular position in the encoded and encrypted
RSA private key. This causes the errors that are triggered during client-side cryptographic processing
to depend on the target plaintext block. User interaction is formally required for these attacks, which
is why we measure their cost in terms of the number of login attempts they need (they are otherwise
computationally inexpensive). As a secondary measure of attack complexity, we account for the
number of ECB encryption oracle calls needed.

The first attack, described in Section 3, exploits an implicit error in the computation of modular
inverses when sanity checking the RSA private key. It is an (un)fortunate consequence of an otherwise
harmless bug in the code (not checking whether an inverse exists) which is caught by the client and
reported to the server. The malicious server can use this oracle repeatedly to learn the value of the

4 This by itself does not suffice for authenticated encryption security, but presents the “immediate” level of
countermeasures, i.e. the most easily achievable solution in the short term. [BHP23] outlines further levels of
countermeasures termed “minimal” and “recommended”, which provide better guarantees but require more
fundamental changes to the MEGA platform.
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target AES-ECB plaintext block modulo a number of small primes, which enables recovery of the
full block using the CRT. The attack requires on average 29.29 login attempts per recovered AES-ECB
plaintext block and 66 ECB encryption oracle queries per attacked user.

The second attack, described in Section 4, relies on how RSA decryption is carried out by the client
during user authentication. It exploits a legacy artefact in the code that changes the resulting RSA
plaintext length if a certain byte condition on the plaintext does not hold, in combination with an
explicit error arising from a plaintext length check that is again reported to the server. The core idea is
as follows. Because the user’s RSA private key is encrypted as a sequence of AES-ECB blocks, we
can use the ECB encryption oracle to overwrite parts of that key – including p, q, and d – on the
granularity of 128-bit blocks. The attack exploits this capability to mount a small order subgroup
attack [vW96, LL97] by overwriting the RSA primes p, q with values such that (p− 1)(q− 1) has
known small prime factors. The attack also overwrites d with a value that is completely known except
in the target plaintext block. By also choosing the RSA ciphertext, the server can force the client’s
RSA decryption to take place in any one of the small subgroups corresponding to each of the small
prime factors of (p− 1)(q− 1). Then, the malicious server can use the length check oracle repeatedly
to learn the overwritten value of d, and hence the target plaintext block, modulo each of the small
primes. The final step again combines these values using the CRT to recover the target block.

We present two main versions of the second attack: one that is simpler but which requires a large
amount of precomputation and one that is more complex but only requires negligible precomputation.
On average, these versions require 211.24 and 211.63 login attempts per block, respectively. In both
versions, this second attack requires a smaller number (up to 15) of ECB encryption oracle queries
per attacked user than our first attack does. Further, this second attack exploits different errors from
the first one and also relies on behaviours resulting from the “legacy” check on the second byte of
plaintext. We include this attack to showcase that the existence of such checks and differentiated error
reporting increases the attack surface.

Since the two attacks work on a per-block basis, we discuss how best to recover the entire RSA private
key of the target user with the help of lattice techniques in Section 5. This reduces the number of
blocks that need to be recovered using either of the two attacks to 4 instead of the 9 that would be
required if the attacks were used directly to e.g. recover all of p. The attack complexity of recovering
the full RSA private key using our first attack is then 211.29 login attempts on average.

As a side contribution, we show in Section 6 how to combine the ECB encryption oracle obtained from
the MEGAdrop feature with the second attack in [BHP23] to recover a target user’s RSA private key
from an unpatched MEGA client using only 2 logins (compared to the 512 logins needed in [BHP23]
and the 6 needed in [RH22]). This shows that the original, unpatched MEGA system was even weaker
than previously thought.

We conclude by briefly discussing attack mitigation in Section 7, noting the problematic nature
of relying on easy-to-implement countermeasures that do not properly address the core security
vulnerabilities. In that section, we also draw wider lessons from our work.

1.2 Related work

The work of [BHP23] provided a detailed overview of the MEGA infrastructure as well as attacks
on confidentiality and integrity of user data stored on the platform. The follow-up work [RH22]
significantly reduced the amount of user interaction required by the first attack of [BHP23] but was
already prevented by MEGA’s patches. The attacks in this work draw inspiration from the small-order
subgroup attacks on DH [vW96, LL97] and the key overwriting attacks on OpenPGP [KR02, BPH22].
The use of a plaintext checking oracle is reminiscent of Bleichenbacher’s attack on RSA with PKCS#1
v1.5 encoding [Ble98] but we target private key recovery rather than plaintext recovery.

1.3 Validation

We have verified the presence of the ECB encryption oracle, implemented the attacks and verified
them in practice on test account data, using a TLS-MitM setup with mitmproxy [The22] to minimise
interaction with the real MEGA servers and a locally-run MEGA web client (version 4.21.4) [MEG22b].
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We made a single modification to the web client to automatically simulate repeated client login
attempts after one initial manual login. The attacks were able to recover arbitrary AES-ECB-encrypted
blocks of the test user’s RSA private key with query costs consistent with our analysis (averaging
29.30 login attempts for the first attack). We also implemented a proof of concept for recovering the
entire RSA private key given four known blocks using lattice techniques. The code is available as
supplementary material.5

1.4 Disclosure

We contacted MEGA to inform them of the vulnerabilities in their system on 29.09.2022. We suggested
a 90-day disclosure period. We also suggested mitigations, stressing the importance of providing
proper cryptographic integrity for data stored under users’ master keys. MEGA acknowledged receipt
of our disclosure on 30.09.2022. They said they would begin working on fixes and liaise with us
before deploying them. On 28.11.2022, MEGA informed us that they were working on hardening
their client software, which would include changing how private keys are stored, removing the ECB
encryption oracle as well as replacing the asmcrypto.js library. We provided high-level feedback on
the proposed changes. The upgrade should mitigate against our specific attacks as well as potential
future attacks, though we have not reviewed the changes in detail. Given the scale of the changes, we
agreed to move the disclosure to 06.03.2023 to coincide with the rolling-out of the upgraded client
software and the publication of this paper. The upgrade was implemented in version 4.32.4 of the
web client [Ort23]. MEGA awarded a bug bounty.

2 Oracles

2.1 Notation

We begin by establishing some notation that we use throughout.
Concatenation is denoted by ∥ . [m]k denotes an encryption of m under the key k, where the algorithm
is determined by the context. B denotes bytes, and for x, |x|B denotes the length of x in bytes and |x|b
denotes the length of x in bits.6 For a tuple X = (x0, . . . , xn−1), |X| = n denotes its size. For a byte string
m = b0 ∥ b1 ∥ . . . ∥ bn−1 of length n and s, t ∈N, we define m[s] := bs, and m[s : t] := bs ∥ . . . ∥ bt−1 for
s < t. An empty object is denoted by null, and a zero byte by 00. ZeroPad(m, n) := 00 ∥ 00 ∥ . . . ∥ m
such that |m|B = n, i.e. left-pad m with zero bytes. If it is necessary to distinguish between a byte
representation and other types, m (as opposed to m) denotes a byte string. Conversion between byte
strings and integers remains implicit, so we may write m← m and vice-versa. (Z/nZ)× denotes the
multiplicative group of integers modulo n. By x ←$ S we denote x sampled uniformly at random
from S. In our attacks, B denotes a target plaintext block, which is a byte string with |B|b = 128.
To differentiate it from a value computed while attempting to recover this block (which could be
different if the attack is not correct), we denote the computed value by B∗.

2.2 ECB encryption oracle

MEGA’s webclient exposes an ECB encryption oracle under a user’s master key kM. This oracle allows
MEGA, or anyone controlling their infrastructure, to encrypt 32 bytes of chosen plaintext in AES-ECB
mode under the target user’s master key kM in a single query. Since AES-ECB without any additional
measures does not provide any integrity protection, ciphertexts containing blocks that the adversary
queried to the oracle cannot be distinguished without additional tests on the expected structure of
the plaintext.

The oracle stems from code related to the MEGAdrop feature as shown in Fig. 1. MEGAdrop enables
anyone to upload files to a folder in the cloud storage of the recipient without needing an account on
MEGA. The recipient activates MEGAdrop for one of their folders and obtains a link that they can
share with others. Unlike shared folders, senders do not see any file stored in the MEGAdrop upload
folder.

5 Available at https://github.com/MEGA-caveat/mega-caveat-poc.
6 For x ∈ Z, the value of |x|b as understood by the MEGA client implementations is not always exact. In the big

integer representation used by the web client, |x|b is normally rounded up to the closest multiple of 8 or 32.
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Fig. 1. Overview of the ECB encryption oracle under a user’s master key kM.

The left algorithm of Fig. 2 describes the upload feature of MEGAdrop. The adversary can pick some
file key kF, nonce NF, and file F during the upload process for the MEGAdrop folder at the link L. The
upload feature locally encrypts the file with AES-CCM using kF and some nonce NF picked by the
client. Backendal et al. describe MEGA’s encryption in more detail7 on lines 2-11 of Fig. 2 in [BHP23].

MEGAdrop.upload(kF, NF, F, L)

1 : [F]kF , Tcond ← File.enc(kF, NF, F)

2 : kobfF ← ObfKey(kF, NF, Tcond)

3 : pk← Server.lookup(L)

4 :
[
kobfF

]
pk ← RSA.Enc(pk, kobfF )

5 : Server.upload([F]kF ,
[
kobfF

]
pk)

Webclient.update()

1 : while true do

2 : τ ← Server.fetch_update(kM, sk)
3 : if τ ̸= ⊥ then

4 : [F]kF ,
[
kobfF

]
pk ← τ

5 : kobfF ← RSA.Dec(sk,
[
kobfF

]
pk)

6 :
[
kobfF

]
kM
← AES-ECB.Enc(kM, kobfF )

7 : Server.upload(
[
kobfF

]
kM
)

8 : endif

9 : endwhile

Fig. 2. Pseudocode for the MEGAdrop feature from the perspective of the sender and recipient. MEGAdrop.upload
encrypts a file F with key kF and nonce NF, uploaded to the MEGAdrop folder with link L. Webclient.update
shows how active clients regularly poll for updates and re-encrypt node keys immediately if they are encrypted
with RSA.

To instantiate an ECB encryption oracle, the adversary sets kobfF to 32 bytes of its choosing. Since
kobfF = (kF ⊕ x) ∥ x for x = NF ∥ Tcond, the obfuscated key defines the values for kF, NF, and Tcond
used in the file encryption (cf. Fig. 4 in [BHP23]). The adversary can use the file reconstruction part
of the framing attack described in [BHP23] to obtain a file F that, when encrypted with kF and NF,
produces the MAC tag value Tcond. Consequently, the adversary can run MEGAdrop.upload(kF, NF, F, L)
to upload kobfF , encrypted under the receiver’s public RSA key, to the server.

Section 9.12 of MEGA’s security white paper [MEG22c] states that to “conserve CPU cycles, RSA-
encrypted keys are transformed into AES-encrypted keys when encountered”. Indeed, the webclient
regularly polls for new files in the background and, when encountering an RSA-encrypted key[
kobfF

]
pk, re-encrypts kobfF with kM and AES-ECB to produce an AES-ECB ciphertext that we denote by[

kobfF

]
kM

. It then uploads this updated key to the server (cf. [MEG22k]) as shown in the right half of
Fig. 2. Therefore, the malicious server can learn the AES-ECB plaintext-ciphertext pair (kobfF ,

[
kobfF

]
kM
).

While testing this oracle in mitmproxy [The22], we noticed that the server can pretend that a new file
was uploaded to a MEGAdrop folder. The webclient re-encrypts the key as described in Fig. 2 even
if the recipient does not use MEGAdrop and the file has an invalid path. Thus, we have an efficient
ECB encryption oracle that does not require any user interaction and leaves no persistent traces in
the user’s cloud storage. It encrypts 32 B per query and can be accessed repeatedly.

7 For instance, we omit the file attributes in our description for simplicity.
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2.3 Oracles from decoding and decryption error reports

Consider the authentication and session ID exchange that takes place every time a user logs into their
account, summarized in Fig. 3 and described in more detail in [BHP23]. Let ke be the user’s 128-bit
symmetric encryption key derived from their password, kM the user’s 128-bit symmetric master key
and (pk, sk) the user’s 2048-bit RSA keypair.

login request( )

 or 

MEGA

 
pick  s.t. 

check 

 
 

 
or throw 

Fig. 3. Simplified overview of the MEGA login procedure.

Here, we focus on one part of this exchange, namely when the server responds to the user’s request
with the tuple ([kM]ke , [privk]kM , [m]pk , uh), where [kM]ke and [privk]kM are AES-ECB-encrypted, [m]pk
is RSA-encrypted and uh is in plaintext. Then, privk encodes the secret key sk for RSA-CRT as shown
in Fig. 4, m encodes the session ID sid and uh is an 11-byte user handle string. The exact alignments of
the fields in privk with respect to the AES-ECB block boundaries will be important in our attacks. The
processing done by the client after it decrypts [kM]ke is shown in Fig. 5. This is the updated behaviour
resulting from the patches described in Section 1 and converted into pseudocode as faithfully as
possible, i.e. in some cases surfacing lower-level processing if it is relevant. In this section, we clarify
further what is and what is not captured by our description.

Fig. 4. Encoding of the RSA secret key together with the block boundaries marking the start of different 16-byte
AES-ECB blocks. Each length encoding field consists of 2 bytes, meaning that data fields start progressively
further into AES-ECB blocks.

In Fig. 5, we adopt the notation “require condition else error” to mean that the client checks the
condition and if it is not satisfied, it aborts and outputs the error to the server. Decoding between
base64-strings, bytes and integers is left implicit unless relevant to some error. Computation of
a−1 mod b should be understood to return null if gcd(a, b) ̸= 1.

In DecodePrivk(privk), the function Parse(privk) sequentially reads through the bytes of privk
whose expected form, shown in Fig. 4, is

len(q) ∥ q ∥ len(p) ∥ p ∥ len(d) ∥ d ∥ len(u) ∥ u ∥ pad

where len(x) denotes the two-byte big-endian length encoding of the byte-length of x and pad is
padding, and returns the tuple of integers P = (q, p, d, u). If DecPrivkAndSid(·) returns successfully,
then sid is sent to the server in the requests that follow.8

8 DecPrivkAndSid(·) contains a minor simplification: it is shown to directly operate on [m]pk, however in reality
it receives c = len([m]pk) ∥ [m]pk.
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DecPrivkAndSid(kM, [privk]kM , [m]pk , uh):

1 : require |uh|B = 11 else ⊥1

2 : privk← AES-ECB.Dec(kM, [privk]kM )

3 : sk← DecodePrivk(privk)

4 : m← DecryptSid(sk, [m]pk)

5 : require |m|B = 255 else (⊥2, |m|B)
6 : require m[16 : 27] = uh else ⊥3

7 : sid← m[0 : 43]

8 : return sid

DecryptSid(sk, [m]pk):

1 : N, e, d, p, q, dp, dq, u← sk
2 : c← [m]pk

3 : require c < N else ⊥7

4 : x← cdp mod p; y← cdq mod q
5 : t← x− y mod p
6 : h← u · t mod p

7 : m← h · q + y mod 2|N|b

8 : m← ZeroPad(m, |N|B)
9 : if m[1] ̸= 00 then

10 : m′ = 00 ∥ m
11 : return m′[2 :

∣∣m′∣∣B]

DecodePrivk(privk):

1 : P, pad← Parse(privk)

2 : require |P| = 4∧ |pad|B < 16 else ⊥4

3 : q, p, d, u← P
4 : N ← p · q
5 : e← d−1 mod (p− 1)(q− 1)

6 : dp ← d mod p; dq ← d mod q

7 : u′ ← q−1 mod p

8 : require u′ ̸= null else ⊥5

9 : cond← |p|b, |q|b, |u|b > 1000∧ |d|b > 2000

10 : require cond∧ (u′ = u) else ⊥4

11 : sk← N, e, d, p, q, dp, dq, u
12 : require e ̸= null else ⊥6

13 : return sk

Fig. 5. Client decoding and decryption to process the session ID, derived from [MEG22n, MEG22l, MEG22m,
MEG22j].

Notice that in addition to DecPrivkAndSid(·) returning a range of different error messages depending
on the processing of secret values, it also modifies the resulting plaintext depending on whether
the second byte of the RSA-decrypted value is 00 or not (line 9 of DecryptSid(·, ·)), a quirk that is
explained in the original code only with the comment “Old bogus padding workaround” [MEG22j].

Caught and uncaught exceptions. Some of the errors shown in Fig. 5 are implicit, i.e. they are a
result of lower-level exceptions caught at a higher level (the ones corresponding to ⊥5 and ⊥6). In all
cases, they are shown at the exact place where the code aborts.

Further, due to some lower-level bugs in asmcrypto.js [MEG22f], the bigint and crypto library used
by the web client, there are cases where the implementation never terminates:

– In DecodePrivk(privk) during Parse(privk), if one of q, p, d, u is 0.

– In DecodePrivk(privk) during the computation of q−1 mod p [MEG22h], if q mod p = 0. We
observed that this is because the implementation of gcd(0, p) never terminates. The same issue
arises during the computation of d−1 mod (p− 1)(q− 1) if d mod (p− 1)(q− 1) = 0.

Similarly, there are cases when the implementation returns incorrect output:

– In DecryptSid(sk, c) during the computation of x← cdp mod p (and likewise y← cdq mod q), there
are several issues.

• If p is even, the code computes x = 0 regardless of the other input values, because modular
power computations were not implemented for even moduli [MEG22g].

• If |p|b > 1024, the implementation of Montgomery reduction [MEG22i] does not return
correct values, and so the output x is also incorrect.
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We were forced to work around some of these implementation errors in our attacks.

3 Attack based on modular inverse computation

Our first attack enables block-by-block plaintext recovery of AES-ECB blocks encrypted under kM. In
particular, this enables RSA private key recovery, i.e. the recovery of privk. Let [B]kM be such a target
ciphertext block with unknown target plaintext block B, for example corresponding to an unknown
block of q from privk.

This attack is in the malicious server setting, or equivalently the TLS-MitM setting, and makes use of
the ECB encryption oracle described in Section 2.2. It exploits the error type ⊥5, which arises on line 7
and line 8 of DecodePrivk(privk) in Fig. 5 when gcd(p, q) ̸= 1. To get to this point, the server must
submit inputs such that none of the previous error types are triggered. The server will only replace
the [privk]kM value and expect to abort before executing DecryptSid(·, ·), so the only condition that
must be satisfied is the one on line 2, which requires that the decrypted privk parses into 4 values
without too much extra padding. Then, error ⊥5 can be distinguished from any of the errors that
could follow, though with overwhelming probability this will be error ⊥4 from line 10 due to the
server overwriting parts of privk.

The main idea behind this attack rests in the observation that if the server can construct [privk∗]kM
such that the decrypted and decoded p is divisible by a small prime r, and the decrypted and decoded
q contains the target block B in its least-significant position, then the outputting of error ⊥5 leaks
that gcd(p, q) ̸= 1 and thus (if some further conditions are satisfied), that q mod r = 0. From this, the
server can learn the value of B mod r. Repeating this for a sufficient number of different primes ri and
combining the values using the Chinese Remainder Theorem (CRT), the server can learn the value of
B mod r0 · . . . · rn−1. If |r0 · . . . · rn−1|b ≥ 128, the server recovers B.

In the following subsections, we describe two versions of the attack in more detail, starting with the
simple, block-aligned version and then describing an attack that is more general and resistant to
simple fixes. Both versions have been implemented and verified using our TLS-MitM setup described
in Section 1.3.

3.1 Block-aligned, small-length version

The attack proceeds in two distinct phases. The first phase calls the ECB encryption oracle to obtain a
set of chosen-plaintext blocks, which are then combined with a target block to form the ciphertexts
submitted to the client as part of the second phase. The second phase relies on the client making a
number of online login attempts. The ECB encryption oracle calls are shown as [x]kM ← OECBkM(x)
(if x consists of 2ℓ blocks, this call will involve ℓ uses of the actual oracle described in Section 2.2). The
content of the modified ciphertexts that will be submitted to the client is shown in Fig. 6. Note that
we aim to reduce the number of OECBkM() calls by ensuring most of the content consists of all-zero
blocks (or blocks containing the value 1), which only need to be queried once.

Fig. 6. The plaintext content of cti,t, where the all-zero blocks are light green, the blocks containing 1 are dark
green and the placement of the target block B is in red.

Precomputation using the ECB encryption oracle. Take {r0, . . . , rn−1} = {7, 11, . . . , 103}, n = 24
small odd primes such that their product R = ∏n−1

i=0 ri has |R|b ≥ 128. Let [B]kM be the target ciphertext
block and denote by B∗ the plaintext block computed as part of this attack.

1. Generate a random prime p′ such that |p′|b = 256.
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2. Let d′ ← 1, u′ ← 1 and encode them as byte strings d′, u′ such that |d′|B = 254, |u′|B = 126.

3. Let rest← len(d′) ∥ d′ ∥ len(u′) ∥ u′ and obtain [rest]kM ← OECBkM(rest).

4. For i ∈ {0, . . . , n− 1}, do the following:

(a) Compute p← p′ · ri and encode it as a byte string p such that |p|B = 126.9

(b) Let ptpi ← len(p) ∥ p and obtain [ptpi]kM ← OECBkM(ptpi).

5. For t ∈ {0, . . . , rn−1 − 1}, do the following:

(a) Compute q∗ ← 2128 · t and encode it as a byte string q∗ such that |q∗|B = 126.

(b) Let ptqt ← len(q∗) ∥ q∗[0 : 110], which skips the last block of q∗ to make space for the target.
Obtain [ptqt]kM ← OECBkM(ptqt).

6. For i ∈ {0, . . . , n− 1}, do the following:

(a) For t ∈ {0, . . . , ri − 1}, do the following:

Store cti,t ← [ptqt]kM ∥ [B]kM ∥ [ptpi]kM ∥ [rest]kM .

Online attack. Suppose we have a set of cti,t as described above.

1. For i ∈ {0, . . . , n− 1}, do the following:

(a) For t ∈ {0, . . . , ri − 1}, do the following:

i. When the client initiates a login, respond to the client’s request with ([kM]ke , cti,t, [m]pk , uh),
where everything but cti,t is as it would be in an honest response.

ii. If the client returns ⊥5, save the value of t and break out of this loop.

(b) Save B∗i ← −2128 · t mod ri.

2. Then, compute B∗ mod R by solving the system B∗ ≡ B∗i (mod ri) for i ∈ {0, . . . , n− 1} using
CRT.

Correctness. Notice that for each decrypted cti,t, DecodePrivk(·) results in p ← p′ · ri and q ←
2128 · t + B. The error ⊥5 will be triggered if and only if gcd(p, q) ̸= 1, which is equivalent to
gcd(p, q) = ri, since p′ is a prime larger than q. Hence ⊥5 is triggered if and only if q mod ri = 0, and
so if and only if B ≡ −2128 · t (mod ri). This means that for the computed value B∗i we have B∗i ≡ B
(mod ri). It follows that B∗ ≡ B (mod R). Since R is such that |R|b ≥ 128 and |B|b = 128, we deduce
that B∗ = B (over the integers).

Cost. First, we count the cost of recovering the target in terms of ECB encryption oracle calls,
assuming that each repeated value (such as an all-zero block) is only queried once. As can be seen
in Fig. 6, the encoding of q∗, p, d′ and u′ is block-aligned. The value rest consists of four non-zero
blocks: two blocks that include a length encoding, and two identical blocks containing the value
1. Next, ptpi also has four non-zero blocks: one length-encoding block and three blocks for p′ · ri
since |p′ · ri|b < 263 < 3 · 128; similarly, ptqt has two non-zero blocks: one length-encoding block
and one block for t since |t|b ≤ |rn−1|b < 128. Finally, notice that ptpi[0 : 16] is the same for
all i, and similarly ptqt[0 : 16] is the same for all t, so the length-encoding blocks can be reused.
Recalling that each use of the oracle returns two blocks of ciphertext, together the attack requires⌈

1
2 · (1 + 3 + 2 + n · 3 + rn−1)

⌉
= 91 ≈ 26.5 queries. Further, the result of these queries can be reused

when recovering multiple blocks for a given target user.

9 We include the prime p′ for several reasons. First, because of one of the uncaught errors, we must make sure
that q mod p ̸= 0. Further, to avoid false positives from error ⊥5, we need the gcd(p, q) ̸= 1 signal to be
equivalent to gcd(p, q) = ri.
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Second, we count the number of online login attempts. On average, the attack requires 1
2 ·∑

n−1
i=0 ri =

627 ≈ 29.29 logins (210.29 in the worst case).10

3.2 Full-length version

The attack in Section 3.1 could technically be prevented by a number of simple checks, e.g. by moving
the check on bit lengths before the client computes q−1 mod p (and so possibly triggers ⊥5), by
ensuring that |p|b, |q|b = 1024 or that d, u ̸= 1. However, none of these changes would prevent this
type of attack: here we provide a more general version that would still work if these changes were
made. The content of the modified ciphertexts that will be submitted to the client is shown in Fig. 7.

Fig. 7. The plaintext content of cti,t, where the all-zero blocks are light green, the parts containing fixed values
are dark green, the placement of the target block B is in red and the placement of the unmodified values from ct

is in yellow.

Precomputation using the ECB encryption oracle. As before, take {r0, . . ., rn−1} = {7, 11, . . . , 103},
n = 24 small odd primes such that their product R = ∏n−1

i=0 ri has |R|b ≥ 128. Let [B]kM be the
target ciphertext block and denote by B∗ the plaintext block computed as part of this attack. Let
ct← [privk]kM be the original ciphertext encrypting the user’s private RSA key.

1. Let d′ ← 22047 and encode it as a byte string d′ such that |d′|B = 256.

2. Let ptd← 00 00 00 01 ∥ len(d′) ∥ d′[0 : 10] and get [ptd]kM ← OECBkM(ptd).

3. Let [rest]kM ← ct[272 : |ct|B]. The slice taken from ct begins with the ciphertext block that
encrypts the most-significant full block of the original d.

4. For i ∈ {0, . . . , n− 1}, do the following:

(a) Compute p← 21023 + 232 · ϱ + 1 for ϱ such that p ≡ 0 (mod ri) and p/ri is prime. Encode it
as a byte string p such that |p|B = 128.

(b) Let ptpi ← 00 01 ∥ len(p) ∥ p[0 : 124] and get [ptpi]kM ← OECBkM(ptpi).

5. For t ∈ {0, . . . , rn−1 − 1}, do the following:

(a) Compute q∗ ← 21023 + 2128+16 · t + 1 and encode it as a byte string q∗ such that |q∗|B = 128.

(b) Let ptqt ← len(q∗) ∥ q∗[0 : 110] and obtain [ptqt]kM ← OECBkM(ptqt).

6. For i ∈ {0, . . . , n− 1}, do the following:

(a) For t ∈ {0, . . . , ri − 1}, do the following:

Store cti,t ← [ptqt]kM ∥ [B]kM ∥ [ptpi]kM ∥ [ptd]kM ∥ [rest]kM .

Correctness. In this version, the precomputation must construct a modified ciphertext such that all
values q, p, d, u are of the expected bit length. Recall that the plaintext encoding has the form: len(q) ∥ q
∥ len(p) ∥ p ∥ len(d) ∥ d ∥ len(u) ∥ u ∥ pad. Since each value is encoded by prefixing a two-byte length
field and the original lengths are either 1024 bits or 2048, the values in the resulting plaintext are not
block-aligned. This is why we construct the “partial” block ptd in Step 2 separately: it is composed of

10 Note that the attack can be easily modified to use one less login for each ri. This is because, in the online phase,
if the server does not get a positive answer from the oracle for any of the values t ∈ {0, . . . , ri − 2}, it means
that the value ri − 1 is the correct one and so does not need to be submitted explicitly.
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the final 4 bytes of p, len(d′) and the first 10 bytes of d′. Similarly, the block-aligned plaintext ptp in
Step 4b begins with another partial block which consists of the final 2 bytes of q∗, len(p) and the first
12 bytes of p.11 Finally, the modified blocks are “stitched” together in Step 6a as in the simple version
of the attack, ensuring that the target B is interpreted as the last “full” block of q.

Cost. Finding p of the correct form for each i in Step 4a is easy and takes 326 ≈ 28.35 trials on average
for the given primes ri. This step is independent of user data and so can be reused to attack multiple
users. With reference to Fig. 7, note that both ptpi and ptqt will likely have two non-zero blocks
each. We assume the reuse of the length-encoding blocks as in Section 3.1. Thus the attack requires⌈

1
2 · (1 + 1 + 2 + n + rn−1)

⌉
= 66 ≈ 26.04 queries.

Online attack. Suppose we have a set of cti,t as described above.

1. For i ∈ {0, . . . , n− 1}, do the following:

(a) For t ∈ {0, . . . , ri − 1}, do the following:

i. When the client initiates a login, respond to the client’s request with ([kM]ke , cti,t, [m]pk , uh),
where everything but cti,t is as it would be in an honest response.

ii. If the client returns ⊥5, save the value of t and break out of this loop.

(b) Save B∗i ← (216)−1 · (−21023 − 2128+16 · t− 1) mod ri.

2. Then, compute B∗ mod R by solving the system B∗ ≡ B∗i (mod ri) for i ∈ {0, . . . , n− 1} using
CRT.

Correctness. Recall that for each decrypted cti,t, DecodePrivk(·) gets p ← 21023 + 232 · ϱ + 1 and
q← 21023 + 2128+16 · t + 216 · B + 1. The overwritten values are encoded so that the parsing succeeds,
and there are no other explicit errors that could be triggered before the error we are using for
the attack.12 The error ⊥5 will be triggered if and only if gcd(p, q) ̸= 1, which is equivalent to
gcd(p, q) = ri with high probability, since p/ri is a large prime and the probability that q ≡ 0
(mod (p/ri)) is ≈ 1/(p/ri) ≤ 2−1016. Hence ⊥5 is triggered if and only if q mod ri = 0, and hence if
and only if B = (216)−1 · (−21023 − 2128+16 · t− 1) mod ri. Thus we have B∗i ≡ B (mod ri). The rest
of the analysis follows as for the simpler version of the attack.
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Fig. 8. Number of login attempts used by the attack over 500 runs.

11 That is, ptd[0 : 4] = p[124 : 128] for all p, and ptpi[0 : 2] = q∗[126 : 128] for all q∗.
12 There is a possibility that d∗ mod (p− 1)(q− 1) = 0 where d∗ ← d′ + (d mod 21968) and d is the original

value encrypted in ct. Because of the uncaught non-termination bug arising during the computation of
(d∗)−1 mod (p− 1)(q− 1), in this case the attack would fail, but this is highly unlikely to happen in practice.
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Cost. The attack requires the same number of online login attempts as the simpler version in Sec-
tion 3.1. We confirmed this in our implementation: in 500 runs of the attack recovering random
ECB-encrypted blocks, the average number of login attempts required by the full version of the attack
was 632 ≈ 29.30. The histogram is shown in Fig. 8.

4 Attack based on small subgroups

Here, we present our second AES-ECB decryption attack. In terms of login attempts it is less efficient
than the attack in Section 3. However it requires fewer uses of the ECB encryption oracle. Further, it
exploits a number of additional errors and also behaviours resulting from the “legacy” check on the
second byte of the RSA plaintext.

The attack is also in the malicious server/TLS-MitM setting and uses the ECB encryption oracle from
Section 2.2 with the aim of recovering blocks of d from the original privk (or any other AES-ECB-
encrypted blocks that can be placed in their position). It exploits the errors ⊥2 and ⊥3 arising on
line 5 and line 6 of DecPrivkAndSid(kM, [privk∗]kM , c∗, uh∗) in Fig. 5 for an adversarially supplied
privk∗ (created with the help of the ECB encryption oracle), c∗ and uh∗. It also requires working
around some of the uncaught exceptions described in Section 2.3. To reach the needed error, the
checks that trigger the earlier errors ⊥1,⊥4,⊥5,⊥6 and ⊥7 must all be satisfied: uh∗ must be a UTF-8
string of size 11, privk∗ must encode q∗, p∗, d∗, u∗ of sufficient length such that gcd(q∗, p∗) = 1 and
gcd(d∗, (p∗ − 1)(q∗ − 1)) = 1 so that the corresponding inverses exist, u∗ = (q∗)−1 mod p∗ and
c∗ < N∗ where N∗ = p∗ · q∗.

Under these constraints, observe that DecryptSid(sk, c∗) behaves differently depending on whether
the second byte of the decrypted value m∗ ← (c∗)d∗ mod N∗ is 00, where m∗ is first zero-padded
to the length of N∗ to form m∗. Suppose the server supplied p∗, q∗ such that |N∗|B = 256. Let
m← DecryptSid(sk, c∗) and m′ be the intermediate value such that m = m′[2 : |m′|B]. Then, based on the
error returned by the client, the server can distinguish the following two cases:

– Case (⊥2, 254): This means that |m|B = 254, so |m′|B = 256 = |N∗|B = |m∗|B, so the condition on
line 9 was not satisfied, i.e. m∗[1] = 00.13

– Case ⊥3: This means that |m|B = 255, so |m′|B = 257 = |N∗|B + 1 = |m∗|B + 1, which can only
arise if m′ = 00 ∥ m∗ and so m∗[1] ̸= 00.

A similar case analysis can be done for arbitrary values of |N∗|B; then the errors may be swapped.
However due to the bugs in the modular power implementation in MEGA code, the attack actually
only works for |N∗|B ≤ 256.

We explain next how to exploit this behavioural difference to leak information about a target user’s
RSA private key.

The server constructs [privk∗]kM using the ECB encryption oracle such that in the “d” field it knows
the plaintext for all blocks except the least-significant full block. That block will be the target of
the attack; it can be an arbitrary AES-ECB-encrypted block [B]kM . Let d∗ denote the “d” component
constructed in this way. The server must also precompute p∗, q∗ of a special form and a number
of values m∗ with m∗[1] = 00 such that it can interpret one of the errors arising on decryption of a
corresponding ciphertext as confirmation of a correct “guess”.

At a high level, the primes p∗ and q∗ are constructed so that (p∗ − 1)(q∗ − 1) contains small prime
factors ri of a given bit length such that their product is at least 128 bits.14 Let G = (Z/N∗Z)× so
that |G| = (p∗ − 1)(q∗ − 1). For each factor ri, the server computes gi ∈ G such that gi has order ri
and such that a value ti ∈ {1, . . . , ri − 1} (or a set of such values Ti) exists with the property that
gi

ti mod N∗ has second byte 00 after zero-padding to the length of N∗. The value of u∗ is then set to
(q∗)−1 mod p∗.

13 Note that the server does not know whether this is because prior to zero-padding, we have |m∗|B ≤ |N∗|B − 2
and therefore trivially m∗[1] = 00 or because |m∗|B = |N∗|B and m∗[1] = 00. However, the root cause is
immaterial to our attack.

14 The factors do not need to be common between (p∗ − 1) and (q∗ − 1), and can be freely distributed between
the two.
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Then, in the online phase of the attack, the server submits privk∗ constructed using the ECB encryp-
tion oracle to contain q∗, p∗, d∗, u∗. For each ri, it sets xi = 1, 2, . . . , ri− 1 and submits c∗i,t ← gi

xi mod N∗

until the client returns the error that confirms the second byte of the decrypted value was 00 (which
is (⊥2, 254) in the case that |N∗|B = 256 which we will use in the attack). Then, based on the precom-
puted values it learns that, for the specific value xi triggering the error, xi · d∗ ≡ ti (mod ri). Here
d∗ is a value that is known except for its least significant full block, where it contains B. From this
equation, the value of B (mod ri) can be recovered. Finally, using CRT and taking some care with
non-block-aligned inputs, allows recovery of the block B.

The attack is described in more detail in the following subsections, first a simpler but less-efficient
version and then the full version. The ECB encryption oracle calls are shown as [x]kM ← OECBkM(x)
as before. Since both versions of the attack must “stitch” AES-ECB blocks together to create the final
ciphertext, we provide the algorithm in Fig. 9 to avoid repetition. This algorithm combines the chosen
values q∗, p∗, d′, u∗ so that they parse as expected, with the target block B being placed in the position
of the least-significant full block of d∗ and overwriting the corresponding block of d′. This is visualised
in Fig. 10.

Stitch(q∗, p∗, d′, u∗, [B]kM )

1 : pt0 ← len(q∗) ∥ q∗ ∥ len(p∗) ∥ p∗ ∥ len(d′) ∥ d′[0 : 234]

2 : pad←$ ({0, 1}8)8 // random padding, could also be 00s

3 : pt1 ← d′[250 : 256] ∥ len(u∗) ∥ u∗ ∥ pad
4 : [pt0]kM ← OECBkM (pt0)

5 : [pt1]kM ← OECBkM (pt1)

6 : ct∗ ← [pt0]kM ∥ [B]kM ∥ [pt1]kM
7 : return ct∗

Fig. 9. Combining modified values produced using the ECB encryption oracle with the target ciphertext block in
the correct format, reusing known AES-ECB blocks where possible. This assumes that |q∗|B = |p∗|B = |u∗|B =
128 and |d′|B = 256, as is the case for legitimate MEGA keys.

Fig. 10. The plaintext content of ct∗, with the placement of the target block B in red.

4.1 Simplified version

This version of the attack assumes a single ti value per factor, which simplifies the presentation but
imposes a high cost at the precomputation stage. Further, there is a non-negligible probability of the
attack aborting and thus failing to complete. We will remove this restriction in the full version of the
attack below.

Precomputation Take {r0, . . . , rn−1} where each ri is a prime such that |ri|b = 8, and n is such that∣∣∣∏n−1
i=0 ri

∣∣∣
b
≥ 128. This imposes the constraint 16 ≤ n ≤ 19. Let [B]kM be the target ciphertext block.

1. Find primes p∗, q∗ such that |p∗|b = |q∗|b = 1024 and

p∗ = 2 ·
(⌈n/2⌉−1

∏
i=0

ri

)
· p′ + 1, q∗ = 2 ·

 n−1

∏
i=⌈n/2⌉

ri

 · q′ + 1
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where p′, q′ is each a product of 2-4 large primes.15 Encode p∗, q∗ as byte strings p∗, q∗.

2. Set N∗ ← p∗ · q∗ and G← (Z/N∗Z)×.

3. For i ∈ {0, . . . , n− 1}:

(a) Find gi ∈ G of order ri, e.g. by sampling h←$ G and computing gi ← h(p
∗−1)(q∗−1)/ri mod N∗

until gi ̸= 1.

(b) Find a value ti ∈ {1, . . . , ri − 1} such that for m ← gti
i mod N∗; m ← ZeroPad(m, N∗), we

have m[1] = 00. If no such ti is found or there are multiple possible values, restart the
precomputation.

4. Compute u∗ ← (q∗)−1 mod p∗ and encode it as a byte string u∗ with |u∗|b = 1024.

5. Let d′ ← 22047 + 1 and encode it as a byte string d′ with |d′|b = 2048.

6. Obtain ct∗ ← Stitch(q∗, p∗, d′, u∗, [B]kM). Let d∗ ← d′ + 248 · B (where B is the unknown target
block) denote the unknown value in the “d” field that will arise on decrypting ct∗.16

Success probability. For random m ∈ G we have Pr[m[1] = 00] = 2−8. For each factor ri the probability
that Step 3b finds exactly one suitable ti is (ri − 1) · 2−8 ·

(
1− 2−8)ri−2, which is greater than 0.18 for

27 < ri < 28. However, this needs to occur for all n factors where n ≥ 16 to get a product of sufficient
length to recover B using CRT, so the overall success probability is of the order ≈ 2−39 or less. To
reduce the required amount of precomputation, in Section 4.2 we increase the bit length of each
factor to ensure that there is at least one suitable ti for each ri and provide a strategy to disambiguate
between multiple fitting ti values.

Online attack Let R = ∏n−1
i=0 ri and ct∗, {gi}i∈I , {ti}i∈I be as computed before, for I = {0, . . . , n− 1}.

1. When the client initiates a login, respond to the client’s request with ([kM]ke , ct∗, [m]pk, uh), where
everything but ct∗ is as it would be in an honest response. If the client returns ⊥6, abort.

2. For i ∈ {0, . . . , n− 1}, do the following:

(a) For x ∈ {1, . . . , ri − 1}, do the following:

i. Compute c∗i,x ← (gi)
x mod N∗.

ii. When the client initiates a login, respond to the client’s request with ([kM]ke , ct∗, c∗i,x, uh),
where everything but ct∗ and c∗i,x is as it would be in an honest response.17

iii. If the client returns (⊥2, 254), save the value of x and break out of this loop.

(b) If there is a saved value x, then we have d∗ ≡ x−1 · ti (mod ri) for unknown d∗.

3. Then, use CRT to compute d∗ mod R from the values collected in Step 2b. Recall that by construc-
tion d∗ = d′ + 248 · B, so d∗ = 22047 + 248 · B + 1. Hence compute

B ≡
(

248
)−1
·
(

d∗ − 22047 − 1
)

(mod R),

to recover the target plaintext block since |R|b ≥ 128.

15 These primes could repeat, the goal here is to avoid (p∗ − 1)(q∗ − 1) having any other small factors except for
r0, . . . , rn−1.

16 Note that by the choice of d′, overwriting the least significant full block of d′ with B is equivalent to adding
248 · B to d′.

17 An honest response refers to the data that an honest server would have sent. Note that in this case, the “honest”
uh will not match the value recovered from c∗i,x, but this check only comes after the errors triggered by the
attack. The attacker could equally replace the uh value with an arbitrary 11-byte UTF-8 string.
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Cost. In the worst case, the main cost of the online attack is ∑i∈I (ri − 1) login attempts. This is
bounded from above by n · (28 − 1) ≈ 212.24 for n ≤ 19. In the average case, for each i we expect
Step 2a to conclude after approximately 1

2 · 28 trials, so the overall bound becomes n · 27 ≈ 211.24 for
n ≤ 19.

Probability of abort. Note that the attack aborts if it receives error ⊥6. This error is returned when-
ever the decrypted d∗ = d′ + 248 · B is such that gcd(d∗, (p∗ − 1)(q∗ − 1)) ̸= 1. Since d∗ is odd by
construction,18 the error can only be caused if at least one of the following is true:

– d∗ ≡ 0 (mod ri) for at least one ri,

– d∗ ≡ 0 (mod p′j) for at least one p′j | p′, or

– d∗ ≡ 0 (mod q′k) for at least one q′k | q
′.

The values p′j , q′k are large primes by construction, so the probability of an abort being caused by those
cases is negligible. However, each factor ri is only 8 bits in size, which means that assuming a random
B the probability that the attack aborts because d∗ ≡ 0 (mod ri) for at least one ri is bounded by
n · 2−7 ≈ 0.15 with n ≤ 19. In Section 4.2, we discuss strategies for avoiding the abort.

Correctness. Now, assume the attack does not abort. By construction, the values of q∗, p∗, d′, u∗ pass
the check on bit length, we have gcd(q∗, p∗) = 1, u∗ = (q∗)−1 mod p∗ and all c∗i,x < N∗. During

DecryptSid(sk, c∗i,x), the client will compute m =
(

c∗i,x
)d∗

mod N∗ = (gi)
x·d∗ mod N∗. If it is the case

that m = (gi)
ti mod N∗ and therefore x · d∗ ≡ ti (mod ri), the second byte of zero-padded m will be

00 and so the client will return (⊥2, 254) to the server. Otherwise, it will proceed with the computation
and with very high probability return ⊥3, since the uh value will not match the relevant substring of
m. Hence the attack recovers the target plaintext block.

4.2 Full version

Here, we provide strategies to improve the running time and the success probability of our second
attack. First, we discuss the use of multiple ti values per factor ri, incorporate this into the attack and
show the effect of this strategy. For practical purposes, this strategy is already sufficient to reduce the
precomputation cost and the likelihood of aborts.

In this version of the attack, we increase the bit length of the factors ri. As a result, the probability of
finding a suitable ti value during precomputation is increased. However this also implies that there
will be more than one such value. We therefore have to also amend the online part of the attack to
provide a way of determining which t ∈ Ti value has caused the expected error for a given x. There
are multiple ways in which this could be achieved, and here we describe one option.

Take ri, Ti and assume that we got the (⊥2, 254) error for some x ∈ {1, . . . , ri − 1}. We can test each
potential value tj ∈ Ti by submitting another query c∗i,xj

← (gi)
xj mod N∗ where xj ← x · t−1

j mod ri.

If the guess for tj is correct, we have x · d∗ ≡ tj (mod ri), and so decryption of c∗i,xj
will produce

(gi)
xj·d∗ mod N∗ = (gi)

x·t−1
j ·d

∗
mod N∗ = gi as the plaintext. Then, as long as gi is such that its second

byte is not 00, which we can ensure in the precomputation phase, the check that produces ⊥2 will
pass. Since the server knows gi and is able to set uh to arbitrary 11-byte values, it can also make sure
to pass the check that produces ⊥3, and therefore get 43 bytes of gi from the client via the returned
sid value when the guess is correct. However, if the guess is not correct, it is very unlikely that the
server-modified uh would match the resulting plaintext, leading to ⊥3. So the server can distinguish
between the two cases.

18 This is also why we cannot make the block-aligned simplification for this attack, because if we aligned it such
that the least-significant block of d∗ is full and therefore placed our target block B there, then if B ≡ 0 (mod 2)
the client would output error ⊥6 on all queries.
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Precomputation Take {r0, . . . , rn−1} where each ri is a prime such that |ri|b = 12, and n is such that
for R← ∏n−1

i=0 ri we have |R|b ≥ 128, so 11 ≤ n ≤ 12. Let [B]kM be the target ciphertext block.

1. Find primes p∗, q∗ such that |p∗|b = |q∗|b = 1024 and

p∗ = 2 ·
(⌈n/2⌉−1

∏
i=0

ri

)
· p′ + 1, q∗ = 2 ·

 n−1

∏
i=⌈n/2⌉

ri

 · q′ + 1

where p′, q′ is each a product of 2-4 large primes. Encode p∗, q∗ as byte strings p∗, q∗.

2. Set N∗ ← p∗ · q∗ and G← (Z/N∗Z)×.

3. For i ∈ {0, . . . , n− 1}:

(a) Find g ∈ G of order ri, e.g. by sampling h←$ G and computing g← h(p
∗−1)(q∗−1)/ri mod N∗

until g ̸= 1.

(b) Initialise Ti = ∅.

(c) For t ∈ {1, . . . , ri − 1}, do the following:

i. Let g′ ← ZeroPad(g′, N∗) for g′ ← gt mod N∗.

ii. If g′[1] = 00, add t to Ti. Else if g′[17 : α] for some α ≥ 28 is a valid UTF-8 string of size
1119, save gi ← g′, a← t and uh∗i ← g′[17 : α].

(d) If Ti = ∅ or a is undefined, restart the precomputation.

(e) Shift Ti by replacing each t ∈ Ti by t · a−1 mod ri. This ensures that the values in Ti are with
respect to the new generator gi instead of g.

4. Compute u∗ ← (q∗)−1 mod p∗ and encode it as a byte string u∗ with |u∗|b = 1024.

5. Compute d′ ← 22047 + 248+128 · δ + 1 for δ < R such that d′ ≡ 0 (mod R). Encode it as a byte
string d′ with |d′|b = 2048.

6. Obtain ct∗ ← Stitch(q∗, p∗, d′, u∗, [B]kM).

Success probability. Increasing the bit length of the factors means that now for each factor ri the
probability that Step 3(c)ii finds at least one suitable t is 1− (1− 2−8)ri−1, which is greater than 0.9996
for 211 < ri < 212. Across all n factors for n ≤ 12, it is still greater than 0.99. Next, the probability that
a random 11-byte string is a valid UTF-8 string is ≈ 0.001634. Hence for each factor ri the probability
that at least one such string will be found is 1− (1− 0.001634)ri−1 > 0.9648, and across all factors it
is at least 0.65. In practice, if the precomputation fails at this point, it can simply be re-run again with
different ri values.

Cost. This version tests all possible values of t for every ri, so overall it must check at most n · 212 ≈ 215

values of gt (these can however be cycled through for each ri). The prime generation is a one-time
cost in the sense that the values can be reused in attacks on multiple users. Finally, since d′ will
be composed mostly of zero-blocks, building the ciphertext ct∗ requires up to 15 uses of the ECB
encryption oracle (which, recall, produces 2 blocks at a time).

Online attack Let ct∗, {gi}i∈I , {Ti}i∈I be the values computed before where I = {0, . . . , n− 1}.

1. When the client initiates a login, respond to the client’s request with ([kM]ke , ct∗, [m]pk, uh), where
everything but ct∗ is as it would be in an honest response. If the client returns ⊥6, abort.

2. For i ∈ I , do the following:

(a) For x ∈ {2, . . . , ri − 1}, do the following:

19 Note that an 11 B byte string interpreted as a valid UTF-8 string will likely not be a string of size 11, i.e. a
string consisting of 11 characters, since not all byte values are interpreted as text and non-ASCII characters
require multiple bytes to encode [Wik22].
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i. Compute c∗i,x ← (gi)
x mod N∗.

ii. When the client initiates a login, respond to the client’s request with ([kM]ke , ct∗, c∗i,x, uh),
where everything but ct∗ and c∗i,x is as it would be in an honest response.

iii. If the client returns (⊥2, 254), save the value of x and break out of this loop.

(b) If Ti = {ti} has a single element, skip this step. Otherwise, for t ∈ Ti, do the following:

i. Let x′ ← x · t−1 mod ri.

ii. Compute c∗i,x′ ← (gi)
x′ mod N∗.

iii. When the client initiates a login, respond to the client’s request with ([kM]ke , ct∗, c∗i,x′ , uh
∗
i ),

where only [kM]ke is as it would be in an honest response.

iv. If the client returns sid = gi[1 : 44], save the value ti ← t and break out of this loop.

(c) We have that d∗ = d′ + 248 · B ≡ x−1 · ti (mod ri), and so B ≡
(
248)−1 · x−1 · ti (mod ri).

3. Then, use CRT to compute B mod R from the values collected in Step 2c, which in turn recovers
the target plaintext block since |R|b ≥ 128.

Success probability. As in the attack in Section 4.1, this attack aborts if it receives error ⊥6. However,
the probability that this happens becomes smaller with the increased bit length of the factors ri.
Assuming a random B, for 12-bit factors the probability of an abort is bounded by n · 2−11 ≈ 0.006
with n ≤ 12. In Appendix A we give a more complex attack strategy that avoids the abort altogether.

In practice, the attack’s success probability may be impacted by another factor, namely differing
implementations of UTF-8 validation. Suppose that the values g produced in Step 3(c)ii of the
precomputation in Section 4.2 have valid UTF-8 substrings of size 11 in Python: this does not
guarantee that they will be interpreted as such by the Javascript webclient. This requires implementing
additional strategies for disambiguation in case the UTF-8-based one never yields the expected sid

request.20

Cost. In the worst case, the main cost of the online phase of the attack is the ∑i∈I (ri − 1) login
attempts needed. This is bounded by n · (212− 1) ≈ 215.58 for n ≤ 12. In the average case, for each i we
expect Step 2a to conclude after at most 28 trials and Step 2b to finish after around 1

2 · |Ti| ≈ 1
2 · ri · 2−8

trials. Added together, the number of login attempts needed in the average case is bounded by
n · (28 + 1

2 · 212 · 2−8) ≈ 211.63 for n ≤ 12. Performing the experimental analysis over a large number
of runs as in Section 3.2 would be more difficult due to the interaction between the disambiguation
strategies and the web client with automated logins, which causes the web client to freeze or begin
sending requests in large batches. This can impact the success rate (in particular, the attack may
produce one x or t value that is slightly off) and hinders automating the attack. We stress that this is
purely an artefact of our proof-of-concept implementation.

Note that to keep the presentation of the attacks simpler, we have assumed specific values of |ri|b
and thus constrained the value of n. In reality, using different values would allow making a different
tradeoff between the precomputation cost and the number of login attempts needed in the online
phase. For instance, using 10-bit primes would lower the (online) worst-case bound to n · (210 − 1) ≈
213.91 for n ≤ 15, but slightly increase the (online) average-case bound to n · (28 + 1

2 · 210 · 2−8) ≈ 211.92

login attempts. It would also make the precomputation phase much less likely to succeed in a single
run: the probability of finding suitable t values for all ri would fall to around 0.11, while the probability
of finding generators with suitable UTF-8 substrings for all ri would only be around 0.0002.

20 One alternative is to instead for all t ∈ Ti submit x′ ← x · t−1 · tj mod ri for some tj ∈ Ti, tj ̸= t, and use
the original error (⊥2, 254) as the confirmation signal. This still has a potential for false positives and false
negatives, however. A final, and most expensive, failover strategy is then to cycle through all values of x,
saving the ones for which the client returns (⊥2, 254) and then running an offline computation to determine
which x values are matched to which t values.
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5 Recovering the RSA private key

Our attacks in Sections 3 and 4 can be seen as building generic AES-ECB decryption oracles. In this
section, we turn this capability into an RSA private key recovery attack. Naively we would expect to
call our costly AES-ECB decryption oracle up to nine times: each factor p, q of N has 1024 bits, but
these are not perfectly aligned with AES block boundaries, necessitating to cover (partial) plaintexts
from nine different 128-bit blocks. However, using a post-processing stage, we can reduce this number
to four.

In particular, as illustrated in Fig. 4, the block alignments of p and q differ. For reasons that will
become apparent below we will need to recover at least 512 bits. Based on the specific alignments,
we will aim to recover the 512+16 least significant bits of q: 512 bits (i.e. four 128-bit blocks) are
recovered using the attacks from Sections 3 and 4 and the least significant 16 bits are “recovered”
using exhaustive search (which avoids the query cost of recovering a fifth block). If instead we
targeted p, we would need to recover 32 bits using exhaustive search, which would have prohibitive
cost. Thus, next, we discuss how to recover the remaining bits of q given the ℓ = 512 + 16 least
significant bits of q. In particular, we will solve the following computational problem.

Definition 1. Let N = p · q be a 2048-bit RSA modulus with p, q having 1024 bits each. Given ℓ consecutive
least significant bits of q, recover q.

Our approach is a simple combination of exhaustive search, lattice reduction and root finding
over Z following Coppersmith’s method [Cop96]. In particular, we use the Howgrave-Graham
variant [How97, How98, May10, MH20] of this algorithm. Let ⌈log2 q⌉ − ℓ < 1024, q = 2⌈log2 q⌉−ℓ · r +
q′0, where r are the bits we are trying to recover and |q′0| ≤ 2ℓ are the known bits of q. Then r satisfies
f ′(x) ≡ 0 mod q for f ′(x) := q′0 + 2⌈log2 q⌉−ℓ · x mod q. Given this we can consider

q0 := 2−⌈log2 q⌉+ℓ · q′0 and f (x) := q0 + x mod q

and note that r still satisfies f (x) ≡ 0 mod q. That is, we translate our problem into one where the
most significant bits are known rather than the least significant ones, cf. [MH20].

From this, the algorithm proceeds by constructing several polynomials that evaluate to zero modulo
q or a multiple thereof, such as (powers of) N. In more detail, Let h ≥ 2 ∈ N and u < h ∈ N, for
0 ≤ i < h we let

fi(x) :=

{
Nu−i · (q0 + x)i for 0 ≤ i < u,
xi−u · (q0 + x)u for u ≤ i < h.

For example, picking h = 4 and u = 2 we get

N2, N · q0 + N · x, q2
0 + 2 q0 · x + x2 and q2

0 · x + 2 q0 · x2 + x3.

First, note that all fi(x) evaluate to zero modulo qu at the correct r. Second, note the maximal degree
of the fi(x) is h − 1, i.e. max0≤i<h(deg( fi(x))) = h − 1 and thus each polynomial has at most h
coefficients.

Now, letting X = 2⌈log2 q⌉−ℓ and f (j)
i denote the coefficient of xj in fi(x), we construct a matrix A

where the entry Ai,j := f (j)
i · X

j. Continuing with our example, we would have

A :=


N2 0 0 0

N · q0 N · X 0 0
q2

0 2 q0 · X X2 0
0 q2

0 · X 2 q0 · X2 X3

 .

Since the matrix is triangular we can read off the determinant det(A) = Nu·(u+1)/2 · Xh·(h−1)/2.
The rows of this matrix A span a lattice which contains a vector v of Euclidean norm ∥v∥ ≤

√
h ·(

Nu·(u+1)/2 · Xh·(h−1)/2
)1/h

by Minkowski’s theorem. In other words, there exists an integer-linear
combination of the rows of A that produces a vector with at most this Euclidean norm. Using lattice
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reduction we can find this shortest vector.21 Now, given a vector of Euclidean norm ∥v∥we know that
its ℓ1 norm, i.e. the sum of the absolute values of its entries, is bounded by |v|1 ≤

√
h · ∥v∥. Finally, if

v ̸= 0 and |v|1 ≤ qu, we can extract a polynomial that evaluates to zero modulo qu on r but which
evaluated at r is strictly smaller than qu.22 In other words, this polynomial evaluates to zero at r over
Z. The algorithm concludes by finding the roots of this polynomial, which can be accomplished in
polynomial time (and efficiently in practice).

To select h and u, by abuse of notation let h also be a formal variable and set u := 1/2 · h− 1. As
in [How98, p.102], we then find a root > 0 of

1024− ℓ

2048
· h · (h− 1)− u · h + u · (u + 1).

This succeeds for ℓ > 512 and the solution grows as ℓ approaches 512 from above.

As mentioned above, in our setting we consider ℓ = 512 + 16: We run the attack from Section 3 on
four blocks to recover 512 bits and run an exhaustive search over the remaining 16 bits (which are
contained in a non-aligned block). In this setting, we picked h = 36 and u = 18. In our experiments,
using LLL, finding a sufficiently short vector takes about 26 seconds on a Intel(R) Xeon(R) Gold 6252
CPU @ 2.10GHz using SageMath/FPLLL [S+22, The21]. In 1024 experiments, we obtained a success
rate of 100%. Thus, we expect to be able to recover q in time 216 · 26 seconds, or about 20 core days.23

We give our proof of concept implementation in Appendix B and as an .

The overall cost of the RSA private key recovery attack is 4 · 29.29 = 211.29 ≈ 2500 login attempts, 66
ECB encryption oracle calls, and about 20 core days of computation (using the attack of Section 3 in
combination with the attack in this section).

6 Attacking unpatched clients

We briefly revisit the attacks of [BHP23] against unpatched MEGA clients in the light of our discovery
of the ECB encryption oracle described in Section 2.2.

Attack 1 in [BHP23] uses an estimated 512 logins to recover a target user’s RSA private key. The
number of logins required was subsequently reduced to 6 in [RH22] by using more sophisticated
lattice techniques.

Attack 2 in [BHP23] then exploits knowledge of that private key to recover two blocks of AES-ECB
plaintext per login. This is done by overwriting two blocks of the encrypted version of u with the target
AES-ECB ciphertext blocks and selecting a carefully crafted RSA ciphertext in the authentication
protocol; the session ID returned by the client in that protocol then leaks the two AES-ECB plaintext
blocks. This approach is used to build an efficient procedure for recovering file encryption keys
in [BHP23].

Interestingly, however, the RSA private key used in Attack 2 in [BHP23] does not need to be the target
user’s true key – it only needs to be a key known to the adversary and any valid RSA private key
(in the appropriate format) will do. Hence, an adversary can use the ECB encryption oracle to create
a suitably encrypted, known RSA private key. By carefully reusing all-zero blocks for most of q, p
and d, the number of ECB encryption oracle calls needed can be made as small as 7. The adversary

21 The traditional presentation of this algorithm invokes the LLL algorithm which gives a short vector that is
at most an exponential factor away from the shortest vector. However, the lattice dimensions involved here
are in the range where the shortest vector problem (SVP) can be solved efficiently in practice – say, up to
dimension 150 [DSvW21] – and we may thus simply assume we solve SVP. In any case, the exponential factor
is ≈ 1.0219h which is < 3 for h ≤ 50.

22 We extract g(x) as g(j) := vj/X j ∈ Z.
23 We note that this computation is “proudly parallel” or “embarrassingly parallel”. This is because for each of our

216 guesses we can run an independent lattice reduction. We also note that the running time is independent of
whether the input instance corresponds to a correct or incorrect guess. Moreover, incorrect solutions resulting
from incorrect guesses can be filtered out using the known public key.
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# -*- coding: utf-8 -*-
"""
To run:

    sage: bulk_run(2048, 2048//4-16, 1024, seed=0, correct=True,  msb=False, jobs=96, h=36)
    sage: bulk_run(2048, 2048//4-16, 1024, seed=0, correct=False, msb=False, jobs=96, h=36)

"""

from sage.all import (
    ZZ,
    RR,
    PolynomialRing,
    random_prime,
    randint,
    matrix,
    log,
    round,
    ceil,
    set_random_seed,
    inverse_mod,
    gcd,
    cputime,
)
from multiprocessing import Pool
from functools import partial

MAX_REPS = 3


def p_known_msb_instance(bits, unknown_bits=None, correct=True):
    if unknown_bits is None:
        unknown_bits = bits / 6
    while True:
        p = random_prime(2 ** (bits / 2))
        q = random_prime(2 ** (bits / 2))
        if (p * q).nbits() == bits:
            break

    a = p - (p % 2**unknown_bits)

    if not correct:
        p_ = random_prime(2 ** (bits / 2))
        a = p_ - (p_ % 2**unknown_bits)

    return p * q, a


def p_known_lsb_instance(bits, unknown_bits=None, correct=True):
    if unknown_bits is None:
        unknown_bits = bits / 6
    while True:
        p = random_prime(2 ** (bits / 2))
        q = random_prime(2 ** (bits / 2))
        if (p * q).nbits() == bits:
            break

    a = p % 2 ** (bits // 2 - unknown_bits)

    if not correct:
        p_ = random_prime(2 ** (bits / 2))
        a = p_ % 2 ** (bits // 2 - unknown_bits)

    return p * q, a


def p_known_msb_attack_simple(N, a, unknown_bits, bits=None):
    R = 2**unknown_bits
    if bits is None:
        bits = N.nbits() // 2
    A = matrix(ZZ, 3, 3)
    A[0] = [0, R * a, R**2]
    A[1] = [a, R, 0]
    A[2] = [N, 0, 0]
    A = A.LLL()

    P, x = PolynomialRing(ZZ, "x").objgen()

    f = sum(A[0, i] // R**i * x**i for i in range(3))
    r = f.roots()[0][0]

    p_ = gcd((a + r), N)
    return (1 < p_ < N), p_


def p_known_lsb_attack_simple(N, a, unknown_bits, bits=None):
    if bits is None:
        bits = N.nbits() // 2
    a_ = (inverse_mod(2 ** (bits - unknown_bits), N) * a) % N
    return p_known_msb_attack_simple(N, a_, unknown_bits, bits)


def p_known_msb_attack_full_find_h(bits, unknown_bits):

    Nbits = bits
    xbits = unknown_bits

    gamma = float(xbits) / Nbits

    P, h = PolynomialRing(RR, "h").objgen()
    u = h / 2 - 0.5

    f = gamma * h * (h - 1) - 2 * u * 0.5 * h + u * (u + 1)
    return ceil(f.roots()[1][0])


def p_known_msb_attack_full(
    N, p0, unknown_bits, h=None, u=None, block_size=2, rep=0, bits=None, verbose=False
):
    X = 2**unknown_bits

    if bits is None:
        bits = N.nbits() // 2

    if rep >= MAX_REPS:
        return False, 1

    do_rep = False
    if h is None:
        do_rep = True
        h = p_known_msb_attack_full_find_h(ceil(log(N, 2).n()), ceil(log(X, 2)).n()) + 2 * rep

    if block_size is True:
        block_size = h

    P, x = PolynomialRing(ZZ, "x").objgen()

    if u is None:
        a = 0.5
        u = ZZ(round(a * h - 1 / 2))

    if verbose:
        print(f"h: {h}, u: {u}")

    A = matrix(ZZ, h, h)
    for i in range(h):
        if i < u:
            pi = N ** (u - i) * (p0 + x) ** i
        else:
            pi = x ** (i - u) * (p0 + x) ** u
        for j in range(h):
            A[i, j] = pi[j] * X**j

    A = A.LLL()
    if block_size > 2:
        A = A.BKZ(block_size=block_size, proof=False)

    f = sum(A[0, j] // X**j * x**j for j in range(A.ncols()))
    try:
        r = f.roots()[0][0]
    except IndexError:
        r = 0

    p_ = gcd((p0 + r), N)

    if (p_ == 1 or p_ == N) and do_rep:
        return p_known_msb_attack_full(
            N,
            p0,
            unknown_bits,
            h=None,
            u=None,
            block_size=block_size,
            rep=rep + 1,
            bits=bits,
            verbose=verbose,
        )
    else:
        return (1 < p_ < N), p_


def p_known_lsb_attack_full(N, p0, unknown_bits, bits=None, **kwds):
    if bits is None:
        bits = N.nbits() // 2
    p0_ = (inverse_mod(2 ** (bits - unknown_bits), N) * p0) % N
    return p_known_msb_attack_full(N, p0_, unknown_bits, bits=bits, **kwds)


def testit(seed, bits, unknown_bits, msb=True, correct=True, **kwds):
    set_random_seed(seed)
    if msb:
        N, p0 = p_known_msb_instance(bits, unknown_bits, correct=correct)
    else:
        N, p0 = p_known_lsb_instance(bits, unknown_bits, correct=correct)
    t = cputime()
    if msb:
        res, p = p_known_msb_attack_full(N, p0, unknown_bits, **kwds)
    else:
        res, p = p_known_lsb_attack_full(N, p0, unknown_bits, **kwds)
    print(res, p)
    t = cputime(t)
    return int(res), t


def bulk_run(bits, unknown_bits, repetitions, seed=None, correct=True, msb=True, jobs=1, **kwds):
    if seed is None:
        seed = randint(2**32)

    successes = 0
    total_time = 0.0
    max_time = 0.0

    f = partial(testit, bits=bits, unknown_bits=unknown_bits, msb=msb, correct=correct, **kwds)

    if jobs == 1:
        for i in range(repetitions):
            r, t = f(seed=seed + i)
            successes += r
            total_time += t
            max_time = max(max_time, t)
    else:
        pool = Pool(jobs)
        res = pool.map(f, [seed + i for i in range(repetitions)])
        for r, t in res:
            successes += r
            total_time += t
            max_time = max(max_time, t)
    print(f"rate: {successes / repetitions}, avg t: {total_time / repetitions}, max t: {max_time}")
    return successes / repetitions, total_time / repetitions, max_time




then applies Attack 2 from [BHP23] with the target AES-ECB ciphertext blocks being selected from
those encrypting the least significant bits of q (from the actual private key). With two applications of
the attack, the adversary recovers 4 plaintext blocks, or 512 bits of q. Applying the lattice attack from
Section 5, the adversary recovers the full RSA private key.

The cost of the attack is 2 login attempts and a small number of ECB encryption oracle calls.

Note that Attack 2 of [BHP23] is prevented by patched MEGA client code because of the requirement
that the client-selected 11-byte string uh appear in m at a specific location and because overwriting u
with a target ciphertext would make the check at line 10 in DecodePrivk(privk) fail.

7 Discussion and future work

On the one hand, the conclusion to be drawn from this work for practitioners and designers is no
different from the one derived from [BHP23]. The root causes at play here were already identified
in [BHP23], whose suggestion of protecting the integrity of encrypted keys using a MAC would have
prevented the attacks in this work as well. Further, the existence of the ECB encryption oracle in
a feature completely separate from the attacked protocol highlights the continued fragility of the
MEGA infrastructure, made possible also by the lack of key separation.

However, our attacks also highlight issues going beyond the ones exposed in previous works. First,
some of the errors that our attacks exploit as oracles are not explicit, but derive from bugs in the
big integer arithmetic provided by asmcrypto.js. This presents a challenge already mentioned
in [BBB+21] which called for a verified big integer library that could serve as a common core for
different projects. In the case considered here, such a library would need to be cross-compilable to
JavaScript or WebAssembly. We consider this a pressing area for future work.

There are also further lessons to be drawn for a cryptanalytic audience. First, our attacks serve as an
additional example of key overwriting attacks [KR02,BPH22,BHP23], a class of attacks that appears to
deserve more exploration in terms of targets (deployed in practice) and attack refinement. Moreover,
our attacks make use of the detailed and verbose error reporting by MEGA clients. This enables
powerful side-channel attacks that can be observed remotely,24 highlighting the practical significance
of these classes of attacks. Finally, our work, along with other recent works attacking widely deployed
protocols such as [VR20,LGR21,AMPS22,SRW22,BPH22], underlines that while it might seem that the
“golden age” of cryptographic attacks against deployed protocols is over – given the level of academic
involvement and formal rigour that went into the design of TLS 1.3 – the target has simply moved
up the stack. As cryptographic applications move beyond “simple” protection of data in transit or
at rest, more complex cryptographic solutions are deployed at scale, often without significant input
from the cryptographic community. This suggests a broad and impactful field for cryptanalysis of
targets “in the wild”. It is well known that attacks are typically required to convince practitioners to
adopt cryptographic recommendations. This in turn suggests that to achieve the adoption of more
secure and formally analysed cryptographic solutions in practice, further cryptanalytical work on the
“current generation” of deployed solutions is needed.

Finally, the two attacks presented in this work require a large number of login attempts. This was also
the case for the first attack of [BHP23] and used as an argument by MEGA that the attack was not
practical. However, later work by [RH22] reduced the number of login attempts to six, and we have
further reduced it to just two. Beyond reinforcing the truism that attacks only get better, this poses
the open problem to improve the attacks presented in this work in terms of login attempt complexity.
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A Avoiding aborts in the small subgroup attack

For completeness, here we describe a strategy that allows to choose parameters in the full version of
our second attack (Section 4.2) to avoid the abort condition altogether. This strategy only modifies the
online part of the attack.

Recall that R = ∏n−1
i=0 ri. To prevent triggering error ⊥6, there are multiple options and here we

describe the simplest one. We can set different values of p∗, q∗ such that before beginning the attack
proper, we can find out which factors are responsible for the error and adapt d′ accordingly. In more
detail, for each ri we set p∗ = 2 · ri · p′ + 1 such that p′ is a product of 2-4 large primes, and q∗ a large
prime. Then, if the client outputs ⊥6, it means that with overwhelming probability d∗ ≡ 0 (mod ri)
for the particular ri. In this way, we can test all small factors. Once we know which ri are responsible,
we can set a new d′ such that d′ ≡ 1 mod ri for those ri and d′ ≡ 0 mod ri for the remaining ri. Unless
gcd(d∗, p′) ̸= 1, which is highly unlikely, this will not produce the error.

Online attack Let ct∗, {gi}i∈I , {Ti}i∈I be the values computed before where I = {0, . . . , n− 1} and
let S = ∅. Take q∗, p∗, d′, u∗ from the precomputation.

1. When the client initiates a login, respond to the client’s request with ([kM]ke , ct∗, [m]pk, uh), where
everything but ct∗ is as it would be in an honest response. If the client does not return ⊥6, skip to
Step 2. Otherwise, do the following:

(a) Find a prime q such that |q|b = 1024 and encode it as a byte string q.

(b) For i ∈ {0, . . . , n− 1}, do the following:

i. Find a prime p∗i such that
∣∣p∗i ∣∣b = 1024 and p∗i = 2 · ri · p′ + 1, where p′ is a product of 2-4

large primes. Encode it as a byte string p∗i .

ii. Compute u∗i ← q−1 mod p∗i and encode it as a byte string u∗i with
∣∣u∗i ∣∣b = 1024.

iii. Obtain ct∗i ← Stitch(q, p∗i , d′, u∗i , [B]kM).

iv. When the client initiates a login, respond to the client’s request with ([kM]ke , ct∗i , [m]pk , uh),
where everything but ct∗i is as it would be in an honest response.

v. If the client returns ⊥6, add i to S .

(c) Let RS ← ∏i∈S ri. Compute d′S ← 22047 + 248+128 · δ + 1 for δ < R such that

d′S ≡ 1 (mod RS ), and

d′S ≡ 0 (mod R/RS ).
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Encode it as a byte string d′S with
∣∣d′S ∣∣b = 2048.

(d) Replace the precomputed ct∗ with ct∗ ← Stitch(q∗, p∗, d′S , u∗, [B]kM).

(e) For i ∈ S , we have that d∗ = d′ + 248 · B ≡ 0 (mod ri) and so B ≡ 0 (mod ri).

2. For i ∈ I\S , do the following:

(a) Follow Step 2a of the full attack in Section 4.2.

(b) Follow Step 2b of the full attack in Section 4.2.

(c) We have that d∗ = d′S + 248 · B ≡ x−1 · ti (mod ri), and so B ≡
(
248)−1 · x−1 · ti (mod ri).

3. Then, use CRT to compute B mod R from the values collected in Step 1e and Step 2c. This recovers
the target plaintext block since |R|b ≥ 128.

Cost. If the strategy for handling aborts in Step 1 is executed, it requires up to 12 + 8n additional
ECB encryption oracle queries as well as n additional logins. However, at the same time the number
of overall logins needed can be reduced by ∑i∈S (ri − 1) since ri with i ∈ S are excluded from the
remainder of the run in Step 2.

B RSA proof of concept implementation

# -*- coding: utf -8 -*-
"""
To run:

sage: bulk_run (2048, 2048//4 -16 , 1024, seed=0, correct=True , msb=False , jobs=96, h=36)
sage: bulk_run (2048, 2048//4 -16 , 1024, seed=0, correct=False , msb=False , jobs=96, h=36)

"""

from sage.all import (
ZZ ,
RR,
PolynomialRing ,
random_prime ,
randint ,
matrix ,
log ,
round ,
ceil ,
set_random_seed ,
inverse_mod ,
gcd ,
cputime ,

)
from multiprocessing import Pool
from functools import partial

MAX_REPS = 3

def p_known_msb_instance(bits , unknown_bits=None , correct=True):
if unknown_bits is None:

unknown_bits = bits / 6
while True:

p = random_prime (2 ** (bits / 2))
q = random_prime (2 ** (bits / 2))
if (p * q).nbits() == bits:

break

a = p - (p % 2** unknown_bits)

if not correct:
p_ = random_prime (2 ** (bits / 2))
a = p_ - (p_ % 2** unknown_bits)

return p * q, a

def p_known_lsb_instance(bits , unknown_bits=None , correct=True):
if unknown_bits is None:

unknown_bits = bits / 6
while True:

p = random_prime (2 ** (bits / 2))
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q = random_prime (2 ** (bits / 2))
if (p * q).nbits() == bits:

break

a = p % 2 ** (bits // 2 - unknown_bits)

if not correct:
p_ = random_prime (2 ** (bits / 2))
a = p_ % 2 ** (bits // 2 - unknown_bits)

return p * q, a

def p_known_msb_attack_simple(N, a, unknown_bits , bits=None):
R = 2** unknown_bits
if bits is None:

bits = N.nbits() // 2
A = matrix(ZZ, 3, 3)
A[0] = [0, R * a, R**2]
A[1] = [a, R, 0]
A[2] = [N, 0, 0]
A = A.LLL()

P, x = PolynomialRing(ZZ, "x"). objgen ()

f = sum(A[0, i] // R**i * x**i for i in range (3))
r = f.roots ()[0][0]

p_ = gcd((a + r), N)
return (1 < p_ < N), p_

def p_known_lsb_attack_simple(N, a, unknown_bits , bits=None):
if bits is None:

bits = N.nbits() // 2
a_ = (inverse_mod (2 ** (bits - unknown_bits), N) * a) % N
return p_known_msb_attack_simple(N, a_, unknown_bits , bits)

def p_known_msb_attack_full_find_h(bits , unknown_bits ):

Nbits = bits
xbits = unknown_bits

gamma = float(xbits) / Nbits

P, h = PolynomialRing(RR, "h"). objgen ()
u = h / 2 - 0.5

f = gamma * h * (h - 1) - 2 * u * 0.5 * h + u * (u + 1)
return ceil(f.roots ()[1][0])

def p_known_msb_attack_full(
N, p0, unknown_bits , h=None , u=None , block_size =2, rep=0, bits=None , verbose=False

):
X = 2** unknown_bits

if bits is None:
bits = N.nbits() // 2

if rep >= MAX_REPS:
return False , 1

do_rep = False
if h is None:

do_rep = True
h = p_known_msb_attack_full_find_h(ceil(log(N, 2).n()), ceil(log(X, 2)).n()) + 2 * rep

if block_size is True:
block_size = h

P, x = PolynomialRing(ZZ, "x"). objgen ()

if u is None:
a = 0.5
u = ZZ(round(a * h - 1 / 2))

if verbose:
print(f"h: {h}, u: {u}")

A = matrix(ZZ, h, h)
for i in range(h):

if i < u:
pi = N ** (u - i) * (p0 + x) ** i
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else:
pi = x ** (i - u) * (p0 + x) ** u

for j in range(h):
A[i, j] = pi[j] * X**j

A = A.LLL()
if block_size > 2:

A = A.BKZ(block_size=block_size , proof=False)

f = sum(A[0, j] // X**j * x**j for j in range(A.ncols ()))
try:

r = f.roots ()[0][0]
except IndexError:

r = 0

p_ = gcd((p0 + r), N)

if (p_ == 1 or p_ == N) and do_rep:
return p_known_msb_attack_full(

N,
p0,
unknown_bits ,
h=None ,
u=None ,
block_size=block_size ,
rep=rep + 1,
bits=bits ,
verbose=verbose ,

)
else:

return (1 < p_ < N), p_

def p_known_lsb_attack_full(N, p0, unknown_bits , bits=None , **kwds):
if bits is None:

bits = N.nbits() // 2
p0_ = (inverse_mod (2 ** (bits - unknown_bits), N) * p0) % N
return p_known_msb_attack_full(N, p0_ , unknown_bits , bits=bits , **kwds)

def testit(seed , bits , unknown_bits , msb=True , correct=True , **kwds):
set_random_seed(seed)
if msb:

N, p0 = p_known_msb_instance(bits , unknown_bits , correct=correct)
else:

N, p0 = p_known_lsb_instance(bits , unknown_bits , correct=correct)
t = cputime ()
if msb:

res , p = p_known_msb_attack_full(N, p0, unknown_bits , **kwds)
else:

res , p = p_known_lsb_attack_full(N, p0, unknown_bits , **kwds)
print(res , p)
t = cputime(t)
return int(res), t

def bulk_run(bits , unknown_bits , repetitions , seed=None , correct=True , msb=True , jobs=1, **kwds):
if seed is None:

seed = randint (2**32)

successes = 0
total_time = 0.0
max_time = 0.0

f = partial(testit , bits=bits , unknown_bits=unknown_bits , msb=msb , correct=correct , **kwds)

if jobs == 1:
for i in range(repetitions ):

r, t = f(seed=seed + i)
successes += r
total_time += t
max_time = max(max_time , t)

else:
pool = Pool(jobs)
res = pool.map(f, [seed + i for i in range(repetitions )])
for r, t in res:

successes += r
total_time += t
max_time = max(max_time , t)

print(f"rate: {successes / repetitions}, avg t: {total_time / repetitions}, max t: {max_time }")
return successes / repetitions , total_time / repetitions , max_time
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